Огромный интерес представили раскопки в Лотхале — крупном портовом городе. Здесь был построен искусственный док для стоянки судов, они заходили сюда из Египта и Месопотамии. По своим техническим характеристикам док в Лотхале превосходил более поздние финикийские и римские доки. Средние размеры его составляли 21х36 м, максимальная глубина — 4,15 м; он был окружен кирпичными стенами шириной от 1,04 до 1,78 м. Суда входили в док через 12-метровые ворота. Водный шлюз при постоянных приливах и отливах регулировал поступление воды в док, что позволяло не прекращать судоходство доже при отливе. Все это требовало немалых познаний в математике, вычислительной технике, строительной механике. Не исключено, что при сооружении более поздних по времени доков, которые повторяли некоторые черты Лотхальского, вместе со строительными приемами были заимствованы и математические методы.

В ходе исследований протоиндийских материалов — объектов с надписями, изображениями и символами — появилась возможность более точно судить об астрономических познаниях жителей Хараппских поселений, а также составить представление, хотя и неполное, о календаре и хронологии. Протоиндийский год делился на два полугодия между зимним и летним солнцестоянием. Вместе с тем его подразделяли на шесть сезонов — каждый из двух месяцев, или четырех полумесяцев. Наряду с месяцем в качестве единицы времени существовали и полумесяцы, в зависимости от фаз луны — новолуния и полнолуния. Выделялись периоды равноденствия. О большой преемственности между Хараппской цивилизацией и позднейшими культурами Индостана говорит тот факт, что деление года на два полугодия между периодами равноденствия сохранилось в позднейшей традиции. Есть основания полагать, что система «лунных стоянок» — накшатр, хорошо известная в ведийский период, частично была известна уже в Хараппскую эпоху.

Тогда использовался цикл, состоявший из пяти 12-летних периодов. Принятие пятилетнего цикла свидетельствует о том, что продолжительность солнечного года считалась равной 360 дням; лунный год определялся в 354 дня и охватывал 12 лунных месяцев. При этом за пять лет разница между солнечным и лунным календарями равнялась приблизительно 30 дням, когда повторялась та же фаза Луны, что и пять лет до того. Широкое распространение получил и 12-летний цикл, учитывающий соотнесенность движения Солнца и Юпитера. Объединение обоих циклов позволило ввести 60-летний период, основанный на согласовании движения Солнца, Луны и Юпитера.

В Мохенджо-Даро были открыты каменные астрономические обсерватории, где, очевидно, жрецы вели свои наблюдения. До нас дошли сделанные из камня цилиндрические кольца, на которых имеются углубления. Вероятно, с помощью таких «календарных колец» выполнялись простейшие астрономические наблюдения, удовлетворявшие требования повседневной практики.

Последующие сведения о математических знаниях индийцев относятся к эпохе вед. Один из разделов ведийской литературы под названием шульва-сутры включает трактаты, связанные с правилами измерений и построений различных жертвенных алтарей. Шульва-сутры (или «правила веревки») сохранились в четырех редакциях — Баудхаяны, Манавы, Апастамбы, Катьяяны.

Широкое распространение в период вед получила десятичная система нумерации, известная еще в эпоху Хараппской цивилизации, была разработана специальная терминология для больших степеней десяти, вплоть до 1053. Эти наименования образовывались с помощью принципов сложения, вычитания, умножения — именно тех принципов, которые позднее стали необходимыми компонентами при создании десятичной позиционной системы счисления. Определения и правила выполнения четырех арифметических действий в ведийской литературе не встречаются, хотя приводятся многочисленные примеры этих операций.

В ведийский период сложились основы арифметики, алгебры, теории чисел, геометрии. Санскритское название арифметики — вьяктаганита — «искусство вычисления с известными величинами». Иногда выполнение вычислений именовали дхуликарма — «работа с пылью», поскольку вычисления производились на счетной доске, покрытой песком или пылью, а то и прямо на земле. Числа писали заостренной палочкой; при выполнении арифметических действий легко было стирать одни результаты и на их месте записывать новые.

Санскритское название алгебры — авьяктаганита — означало «искусство вычисления с неизвестными величинами», а также биджаганита — «основы искусства вычисления», или «искусство вычисления с элементами». Зачатки индийской алгебры можно найти в шульва-сутрах, но она в основном была выражена в геометрической форме — той, которая позднее получила блестящее развитие в греческой науке. Так, геометрический метод преобразования квадрата в прямоугольник, одна из сторон которого задана, эквивалентен решению линейного уравнения с одним неизвестным: ахЧ).

В III–II вв. до н. э. сложилась индийская система обозначения степеней — за пять веков до Диофанта — (III в. н. э.), когда греческая числовая алгебра достигла своей кульминации. В конце ведийской эпохи начала создаваться математическая символика: вторая степень называлась пратхама-варга («первый квадрат»), четвертая — двития-варга («второй квадрат»), восьмая — трития-варга («третий квадрат»); корень второй степени обозначался как пратхама-варга-мула («первый квадратный корень»), корень четвертой степени — двития-варга-мула («второй квадратный корень»). Символами служили первые слоги соответствующих санскритских слов. Следует отметить, что и Диофант, подобно индийским ученым, строил буквенную символику именно для степеней неизвестных; показательно, что и способ образования символов — первые или последние буквы соответствующих терминов — полностью аналогичен индийскому.

Самая ранняя классификация алгебраических уравнений в Индии относится к III в. до н. э.; она составлена в зависимости от степени уравнений — уравнения первой степени, или линейного (яват-тават), квадратного, или второй степени (варга), кубического, или третьей степени (гхана), биквадратного, или четвертой степени (варга-варга). Тогда же даны первые способы решения некоторых типов этих уравнений.

Видное место в индийской математике занимали арифметические и геометрические прогрессии. Некоторые задачи приобрели чрезвычайно широкую популярность — скажем, о награде за изобретение шахмат, сводящаяся к нахождению суммы геометрической прогрессии со знаменателем 2. В «Тайтгирия- самхите» содержатся арифметические прогрессии:! 3, 5… 19; 2, 4, 6… 20; 4, 8, 12… 20; 5, 10, 15… 100; 10, 20, 30…. 100; 19, 29, 39…. 99. В «Панчавимша-брахмане» описывается геометрическая прогрессия со знаменателем 2 и первым членом, равным 12. В «Шатапатха-брахмане» упомянут результат суммирования семи членов арифметической прогрессии с начальным членом 24 и разностью 4. К нахождению этой суммы приводит задача о вычислении числа слогов определенного размера. В джайнской «Кальпа-сутре» дается геометрическая прогрессия 1, 2, 4, 8, 16…. 8192 и ее сумма 16383. Эта профессия играла важную роль не только в математике, но и в стихосложении, когда надлежало вычислить число слогов нужного размера.

Ряд задач на арифметическую и геометрическую прогрессии, аналогичные индийским, содержится в математических руководствах армянского математика Анания Ширакаци (VII в.), итальянца Леонардо Пизанского (XII–XIII вв.), византийского ученого XIV в. Николая Артавазда; они встречаются во многих средневековых западноевропейских руководствах. В «Памятниках минувших поколений» Бируни вычислил сумму 64 членов геометрической прогрессии 1 + 2 + 22 + 24 + … 26, связав ее с индийской легендой о происхождении игры в шахматы.

Немалый интерес индийские ученые проявляли к комбинаторике. Одним из побудительных мотивов к занятию ею послужило ведийское стихосложение, имевшее различные размеры. При создании стихов надо было учитывать не только число слогов, но и долготу гласных звуков в каждой слоговой группе. Это привело к разработке математической теории. Среди ведийских сочинений, посвященных этому вопросу, особого внимания заслуживает трактат «Чханда-сутра» Пингалы (III–II вв. до н. э.).

Самхиты позволяют составить представление и об астрономических знаниях древних индийцев. Здесь встречается упоминание месяца — одной из ранних естественных единиц времени. Он подразделяется на две части: светлую половину (шукла) — до полнолуния и темную (кришна) — от полнолуния до новолуния. Первоначально лунный синодический месяц определялся в 30 дней, потом он был вычислен более точно и составил 29,5 дня. Звездный месяц был больше 27, но меньше 28 дней, что впоследствии отразилось в системе накшатр — 27 или 28 лунных стоянок.

В отличие от вавилонских и древнекитайских астрономов древнеиндийские не составляли звездных каталогов. Для создания календаря, нужного в практических целях, принималось в расчет движение Солнца и Луны. Внимание в основном концентрировалось вокруг тех созвездий, которые лежали вдоль или вблизи

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату