Из-за чего же возник весь этот ажиотаж?

Вот как формулируется теорема Байеса:

p(A|X) = p(X|A)·p(A)/p(X).

Возьмем некоторое явление (А), о котором мы хотим узнать, и наблюдение (X), которое дает нам какие-то сведения об A. Теорема Байеса говорит нам, насколько увеличится наше знание об A в свете новых сведений X. Нам незачем вникать в детали этого уравнения. Главное – что это уравнение дает нам именно ту математическую формулу убеждений, которую мы искали. Убеждению в данном случае соответствует математическое понятие вероятности. Вероятность позволяет измерить, в какой степени я убежден в чем-то. Если я в чем-то совершенно уверен (например, в том, что утром взойдет солнце), вероятность равна единице [в форме уравнения это можно выразить так: p(взойдет солнце) = 1]. А если я совершенно уверен, что что-то никогда не случится, вероятность равна нулю [p(Крис Фрит выиграет конкурс 'Евровидение') = 0]. Большинство наших убеждений не так тверды и занимают промежуточное положение между нулем и единицей [p(поезд, на котором я езжу на работу, опоздает) = 0,5]. И эти промежуточные убеждения постоянно изменяются по мере того, как мы получаем новые сведения. Прежде чем ехать на работу, я уточню положение поездов Лондонского метро в интернете, и эти новые сведения изменят мое убеждение о вероятности опоздания поезда (хотя и ненамного...).

Теорема Байеса показывает, насколько именно изменится мое убеждение относительно A в свете новых сведений X. В приведенном выше уравнении p(A) – мое первоначальное или априорное, убеждение об A до поступления новых сведений X, p(X|A) – вероятность получения сведений X в случае, если A действительно будет иметь место, а p(A|X) – мое последующее, или апостериорное, убеждение об A с учетом новых сведений X. Все это станет понятнее на конкретном примере.

Вас, вероятно, удивило, почему это Брэдли Карлин, профессор здравоохранения из Университета Миннесоты, так интересуется теоремой Байеса. Дело в том, что здравоохранение – одна из тех многих областей, где теорема Байеса находит свое применение.

Рассмотрим проблему рака груди.[123] Обратимся к частному случаю, связанному с эффективностью массовых обследований. Мы знаем (это наше априорное убеждение), что к 40 годам у 1% женщин развивается рак груди (p(A) = 0,01). Кроме того, у нас есть хороший метод выявления рака груди – маммография (этот метод дает нам новые сведения). Результат маммографии будет положительным у 80% женщин с раком груди (p(X| A) = 0,8) и лишь у 9,6% женщин без рака груди (p(X|~A) = 0,096). Таковы вероятности получения наших сведений в случае, если наше убеждение истинно. Судя по этим цифрам, кажется очевидным, что регулярные обследования на предмет наличия рака груди – вещь хорошая. Итак, если мы обследуем всех женщин, то какова будет среди тех, у кого обследование даст положительный результат, доля тех, у кого действительно будет рак груди, то есть каково будет значение p(A| X)?

Учитывая, что этот метод кажется хорошим, каково будет ваше убеждение относительно женщины, для которой только что получен положительный результат маммографического обследования на рак груди? Большинство людей сказали бы, что у нее, скорее всего, рак груди. Но применение теоремы Байеса показывает, что это мнение ошибочно. Мы можем легко убедиться в этом, если на время забудем о вероятностях. Вместо этого давайте рассмотрим 10 000 женщин в возрасте 40 лет и старше.

Еще до обследования эти 10 000 женщин можно мысленно разделить на две группы:

Группа 1: 100 женщин с раком груди;

Группа 2: 9900 женщин без рака груди.

Группа 1 – этот тот 1% женщин, у которых развился рак: p(A)

После обследования женщин можно разделить на четыре группы:

Группа А: 80 женщин с раком груди и положительной маммографией;

Группа Б: 20 женщин с раком груди, но с отрицательной маммографией.

Группа В: 950 женщин без рака груди, но с положительной маммографией;

Группа Г: 8 950 женщин без рака груди и с отрицательной маммографией.

Группа А – это те 80% женщин с раком груди, у которых его выявляет маммография: p(X|A)

Группа В – это те 9,6% женщин, у которых нет рака груди, но результат маммографии положительный: p(X|~A).

Итак, результат обследования оказался положительным у 950 женщин, у которых нет рака груди, и только у 80 женщин, у которых есть рак груди. Чтобы ответить на вопрос 'Какова доля женщин с раком груди среди тех, у кого результат маммографии положительный?', мы разделим число женщин в группе А на суммарное число женщин в группах А и В (то есть на общее число женщин с положительной маммографией). Это даст нам ответ 7,8%. Иными словами, более 90% женщин, у которых маммография дает положительный результат, в действительности не больны раком груди. Несмотря на то что маммография – хороший метод выявления рака груди, теорема Байеса говорит нам, что получаемые с ее помощью сведения сравнительно малоинформативны.[124] Проблема возникает оттого, что мы обследуем сразу всех женщин в возрасте 40 лет и старше. Для женщин этой большой группы априорное ожидание рака весьма невелико. Теорема Байеса показывает, что результаты маммографии будут намного информативнее, если обследовать 'группы риска', например женщин, у которых в семье были случаи рака груди.

Теперь вам уже, наверное, кажется, что вы узнали больше, чем нужно, о том, как на деле работает теорема Байеса. Какое же все это имеет отношение к решению проблемы познания окружающего мира?

Идеальный байесовский наблюдатель

Важность теоремы Байеса состоит в том, что она дает нам возможность очень точно измерять степень, в которой новые сведения должны менять наши представления о мире. Теорема Байеса дает нам критерий, позволяющий судить о том, адекватно ли мы используем новые знания. На этом и основана концепция идеального байесовского наблюдателя – воображаемого существа, всегда использующего получаемые сведения наилучшим из возможных способов. Как мы только что убедились из примера с раком груди, у нас очень плохо выходит использовать получаемые сведения, когда речь идет о редких событиях и больших числах. Психологи охотно придумывает забавные и полезные задачи, которые у студентов, даже тех, кто изучает статистику и логику, никак не получается правильно

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

1

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату