В итоге четыре десятилетия тому назад Мандельброт вручил экономистам и пекущимся о своем резюме филистерам жемчуг, который они отвергли, потому что его идеи были для них слишком хороши. Именно это самое и называют margaritas ante porcos — бисер перед свиньями.

В оставшейся части главы я расскажу, почему для объяснения большой доли случайностей мною предлагаются именно мандельбротовы фракталы, не обязательно в их точном употреблении. Фракталы — это вариант по умолчанию, приближение, основа. Они не решают проблему Черного лебедя и не превращают всех Черных лебедей в явления предсказуемые, но они значительно смягчают проблему Черного лебедя, делая эпохальные события постижимыми. (Черные лебеди становятся Серыми. Почему Серыми? Потому что чистая белизна есть только в гауссиане. Подробности позже.)

ЛОГИКА ФРАКТАЛЬНОЙ СЛУЧАЙНОСТИ (С ПРЕДУПРЕЖДЕНИЕМ) [77]

Я показал в таблицах возрастания богатства в главе 15 логику фрактального распределения: если богатство удваивается с 1 (минимум) до 2 (минимум) миллионов, доля людей с таким капиталом урезается вчетверо, то есть налицо экспонента 2. При экспоненте 1 доля такого же богатства уменьшилась бы вдвое. Экспонента — это показатель степени, поэтому широко распространен термин степенной закон. Будем называть количество случаев, перекрывающих некий уровень, превышением: превышение 2 миллионов — это количество людей с состоянием больше 2 миллионов. Одно из основных свойств этих фракталов (или еще один способ выразить их основное свойство — масштабируемость) заключается в том, что отношение двух превышений будет отношением их нижних порогов[78], возведенным в степень, равную минус экспоненте.

Проиллюстрируем это. Положим, вы 'думаете', что только 96 названий книг в год разойдутся тиражом более 250 000 экземпляров (как это было в прошлом году), и, 'по-вашему', экспонента должна быть примерно 1,5. Простым умножением 96 на (500 000 / 250 000)-1,5 вы можете определить, что примерно 34 названия разойдутся тиражом более 500 000 экземпляров. Пойдя далее, мы установим, что около 8 книг будут проданы в количестве более миллиона экземпляров: 96 х (1 000 000 / 250 000)- 1,5

Давайте рассмотрим разные выверенные экспоненты для всевозможных явлений.

Но прежде всего следует предупредить, что эти экспоненты ни в коем случае не точные показатели. Почему, мы увидим через минуту, но пока отметим, что этих параметров мы не наблюдаем; мы их просто угадываем или вводим для статистики, и поэтому временами бывает трудно узнать истинные параметры — если они вообще существуют. Сначала поговорим о практической роли экспоненты. 

Таблица 3 иллюстрирует влияние крайне невероятного. Она показывает долю верхнего 1 процента и верхних 20 процентов в общей сумме. Чем меньше экспонента, тем выше эта доля. Но посмотрите, сколь чувствителен процесс: переход от 1,1 к 1,3 разом уменьшает процент с 66 до 34. Разница в экспоненте всего лишь в 0,2 резко меняет результат — и ведь такую разницу способна дать простая ошибка в расчетах. А разница-то принципиальная: только подумайте, что мы точно не знаем, чему равен показатель, потому что не можем измерить его непосредственно. Единственное, что нам остается, — это делать прикидки, основываясь на прошлых данных, или полагаться на теории, которые позволяют построить некую модель, которая, в свою очередь, позволяет строить некие предположения. Но у таких моделей могут оказаться скрытые изъяны, из-за чего опасно безоговорочно применить их к реальности.

Итак, помните, что экспонента 1,5 — это приближение, что ее трудно вычислить, что она не свалится на вас с неба, по крайней мере на счет раз-два, и что вы столкнетесь с гигантской погрешностью. Вы обнаружите, что число книг, проданных в количестве более чем миллион экземпляров, не обязательно будет равно 8 — их может быть целых 20 или всего лишь 2.

Еще важнее то, что применение именно этой экспоненты допустимо начиная с некоторого числа, называемого 'переходным'. Это могут быть 200 000 книжных экземпляров, а то и 400 000. Точно так же у богатства, скажем, выше 600 миллионов долларов, когда неравенство растет, и ниже этой черты — свойства разные. Как узнать, где точка перехода? Это проблема. Мои коллеги и я обработали примерно 20 миллионов финансовых данных. Набор данных у нас у всех был один, но мы так и не пришли к согласию в том, какова должна быть экспонента. Мы понимали, что данные подчинены действию фрактального степенного закона, но, как оказалось, точное число высчитать невозможно. Однако знание того, что распределение масштабируемо и фрактально, давало нам право действовать и принимать решения.

Проблема верхней границы

Некоторые аналитики исследовали и согласились принять фрактал — 'до определенного предела'. Они утверждают, что богатство, продаваемость книг и рыночные обороты на некотором уровне перестают быть фрактальными. Предлагаемый ими метод — 'усечение'- Я согласен, что есть уровень, на котором фрактальность может сойти на нет, только вот где он? Сказать: я не знаю, где находится верхний предел, и сказать: предела нет — на практике одно и то же. Устанавливать верхний предел крайне опасно. Кто- нибудь может предложить: ограничим наш анализ богатства потолком в 150 миллиардов долларов. Но кто- то другой имеет все основания возразить: а почему не 151 миллиард? Или не 152? С таким же успехом можно считать, что эта переменная стремится к бесконечности.

Не верьте в точность

Я научился на опыте нескольким трюкам: какую бы экспоненту я ни пытался высчитать, она, скорее всего, будет преувеличена (напомню, что чем больше экспонента, тем скромнее роль значительных отклонений) — то, что у вас перед глазами, оказывается менее 'чернолебяжьим', чем то, что от вас скрыто. Я называю это проблемой маскарада.

Скажем, я генерирую процесс с экспонентой 1,7. Вы не видите работы генерирующего устройства, а только ряд полученных данных. Если я спрошу, какова экспонента, вы с большой долей вероятности остановитесь на чем-то вроде 2,4. Итог будет таким даже при миллионе показателей. Причина в том, что некоторым фрактальным процессам нужно очень много времени, чтобы раскрыть свои свойства, и вы недооцениваете силу вероятного всплеска.

Иногда фрактал может умело замаскироваться под гауссиану, особенно когда 'разветвление' начинается с большого числа. У фрактальных распределений всплески такого рода настолько редки, что мы теряем бдительность: мы не распознаем их фрактальную структуру.

Снова о лужице

Из всего вышесказанного вы уже наверняка поняли, что, какую бы модель мы ни признавали властительницей мира, узнать ее параметры непросто. Так что в связи с Крайнеста-ном вновь встает проблема индукции, на сей раз еще более остро, чем в любой из предыдущих глав. Говоря по-простому, если процесс имеет фрактальный характер, он оперирует громадными величинами, а значит, есть вероятность громадных отклонений, но насколько часто эти отклонения будут возникать, трудно сказать мало-мальски уверенно. Это напоминает проблему лужицы: она могла образоваться из самых разных кубиков льда. Как человек, который идет от реальности к возможным объясняющим моделям, я встречаюсь с массой проблем совершенно иного свойства, чем проблемы тех, кто поступает наоборот.

Я только что прочел три 'научно-популярные' книги, посвященные исследованиям сложных систем: 'Вездесущесть' Марка Бьюкенена, 'Критическую массу' Филипа Болла[79] и 'Почему мало что удается' Пола Ормерода. По мнению этих трех авторов, мир социальных наук полон степенных законов, и с таким взглядом я конечно же согласен. Они также заявляют, что многие из явлений такого порядка на самом деле универсальны, что есть удивительное сходство между разными процессами в природе и поведением социальных групп, с чем я тоже согласен. Подкрепляя свои исследования теориями различных сетей, они указывают на поразительное соответствие между так называемыми критическими

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату