космической программе. А сама шлюзовая камера в дальнейшем уже стала неотъемлемой частью конструкции будущей орбитальной станции, а не отстреливалась после завершения работ, как это было на корабле «Восход-2».
Выход А. Леонова помог практически решить многие вопросы деятельности космонавтов в открытом космосе.
Например. Оказалось, что отход и подход к кораблю с помощью страховочного фала представляет собой довольно сложную и опасную процедуру. Чем больше расстояние отхода от корабля, тем больше скорость возвращения космонавта к кораблю и скорость вращения самого космонавта.
Это влечет за собой не только потерю ориентировки, но и опасность повреждения скафандра и травм космонавта в момент соприкосновения с элементами корабля и станции. Ведь этими элементами могут быть и антенны, и перила, и другие выступающие части.
Кроме того. Чем больше длина фала, тем больше вероятность запутывания в нем космонавта Необходимо постоянно контролировать положение не только собственное, но фала, и корабля, и скорости вращения с перемещением.
Опасен и тепловой перегрев, так как может вызвать «солнечный удар», а следом не только потерю работоспособности, но и смерть.
Впервые неприятности перегрева испытал на себе А. Леонов. Метод снятия тепла в его скафандре за счет вентиляции чистого кислорода не был в полной мере эффективным. В результате нештатной ситуации и больших физических перегрузок температура его тела значительно повысилась, пот заливал не только тело, но и лицо. Сильно запотело и стекло шлем. Это ухудшало ему видимость в самые ответственные минуты выхода в космос.
Все скафандры соединялись с кораблем или станцией усиленным фалом для обеспечения безопасности космонавтов. В нем были также пропущены провода связи и управления.
19 МАРТА.
После полного и успешного выполнения программы космического полета на Землю возвратились космонавты Беляев П. И. и Леонов А. А.
При спуске космонавтам Беляеву и Леонову пришлось впервые использовать ручную ориентацию корабля перед спуском с последующей выдачей тормозного импульса. К этому пришлось прибегнуть из – за отказа в работе основной автоматической системы ориентации. Причем обнаружилась существенная особенность. Корабль оказался чрезвычайно чувствительным к малейшим перемещениям космонавтов. Он, как маленькая лодка на воде, кренился от малейшего изменения положения или перемещения космонавтов.
Беляев все же сориентировал корабль, но тормозной импульс выдал специально чуть больше расчетного. Он дал возможную поправку на свою ошибку в отсчет работы двигателя по секундам, чтобы с гарантией перелететь Европу. В результате, как и следовало ожидать, он перестарался и возвращаемый аппарат сел в глухие дебри Пермской тайги.
В сорокаградусный мороз, в полутораметровом снегу экипаж около двух суток боролся за свое существование, пока не подоспела помощь спасателей. Экипаж впервые реально испытал на себе все средства спасения и выживания, которые он осваивал на предварительных тренировках перед полетом.
Беляев П. И. награжден орденом Ленина и медалью Золотая Звезда. Ему присвоены звания Герой Советского Союза и Летчик-космонавт СССР.
Леонов А. А. награжден орденом Ленина и медалью Золотая Звезда. Ему присвоены звания Герой Советского Союза и Летчик-космонавт СССР
Чтобы завершить рассказ о полетах на космических кораблях «Восток» и «Восход», нужно разобраться еще хотя бы с основными формулировками и понятиями, связанными с пилотируемой космонавтикой. Вот некоторые из них.
Орбита – траектория движения космического летательного аппарата на основном участке полета.
Перигей – ближайшая к Земле точка орбиты космического аппарата.
Апогей – наиболее удаленная от Земли точка орбиты космического аппарата.
Линия апсид – линия, соединяющая точки апогея и перигея.
Восходящий узел орбиты – точка, в которой орбита пересекает плоскость экватора при переходе космического корабля из южной полусферы в северную.
Нисходящий узел орбиты – точка, в которой орбита пересекает плоскость земного экватора при переходе космического аппарата из северной полусферы в южную.
Линия узлов – линия, соединяющая восходящий и нисходящий узлы орбиты.
Наклонение орбиты – угол между плоскостью орбиты космического аппарата и плоскостью экватора.
Величина угла наклонения орбиты определяет границы географических широт, в пределах которых будет летать космический корабль. Чем больше наклонение орбиты, тем больше диапазон достижимых географических широт, но тем меньше вес выводимого на орбиту корабля. Последнее вызвано тем, что при увеличении наклона орбиты уменьшается энергия, передаваемая космическому кораблю за счет ее суточного вращения.
С полярной орбиты можно осматривать всю Землю, но для ее достижения требуются очень и очень многие энергетические затраты.
Одно и то же наклонение орбиты может быть получено при северо – восточном и юго – восточном направлении запуска ракеты – носителя. При старте с космодрома Байконур используется северо-восточное направление, так как в этом случае полет на участке выведения и непосредственно после отделения от ракеты-носителя проходит над территорией Казахстана и России. А это значит, что на наиболее ответственных участках полета наземные станции слежения и контроля могут осуществлять радио и телевизионную связь с кораблем, принимать телеметрическую информацию, более продолжительное время проводить измерения параметров орбиты.
На участке выведения от ракеты-носителя космического комплекса отделяются и падают на Землю отработавшие ступени. Выделить район для падающих частей естественно легче на собственной и дружественной территориях. Однако количество выделенных районов ограничено. Поэтому ограничены и возможные направления запусков ракет-носителей, а, следовательно, и величины угла наклонения.
Трасса выведения пролегает над малонаселенными районами и потому предполагаемый ущерб от падения обломков рассчитывается как минимальный.
Та же задача стоит перед учеными, конструкторами и при выборе возможных областей приземления возвращаемых аппаратов.
В уже выбранных районах выведения и спуска не допускают никакого строительства крупных промышленных объектов, не планируют расширение и развитие уже существующих населенных пунктов. И это понятно. Никто не хочет жить с осознанием того, что в любую минуту на голову может свалиться что-то тяжелое, от которого и убежать будет невозможно.
В СССР и теперь в России наклонение орбиты пилотируемых космических кораблей находится в пределах от 51 до 65 градусов. Большое наклонение было принято для первых космических кораблей. Затем практически была принята орбита выведения с наклонением 51,6 градуса. Но для интернациональных экипажей при автономных полетах широкий выбор угла наклона сохранялся, так как это позволяло экипажам проводить исследования природных ресурсов над территорией своих стран.
Если бы Земля была неподвижной, то есть не вращалась бы вокруг своей оси, то орбита космического корабля все время проходила бы над одними и теми же районами Земли. Однако Земля вращается не только вокруг Солнца, но и вокруг собственной оси. Вследствие этого вращения при заданном наклонении орбиты географические координаты мест, над которыми будет пролегать полет космического корабля, зависят от периода его обращения – времени одного полного оборота корабля вокруг Земли.
Эти координаты, соединенные одной линией, образуют трассу полета. Трасса каждого нового витка в пространстве точно такая же, как и предыдущего, но из-за собственного вращения Земли сдвинута к западу по долготе на угол поворота Земли относительно плоскости орбиты за период обращения. Долготное межвитковое расстояние сдвига за один оборот составляет 22,5 градуса.
Полный оборот плоскости орбиты космического корабля вокруг Земли завершается приблизительно