Уеда, 1980) Рис. 9. Свидетельства спрединга океанического дна: а — аномалии величины напряженности магнитного поля в районе Срединно-Атлантического хребта; б — карта значений возраста дна Северной Атлантики (цифры — миллионы лет) (по Монину, 1980) Рис. 10. Положение материков: а — 180 млн лет назад; б — 135 млн лет назад; в — 65 млн лет назад; г — современное (по Монину, 1980)

Что такое конвекция вообще? Вот мы поставили на плиту чайник. Через некоторое время придонный слой воды нагревается от конфорки. Поскольку любое вещество при нагревании расширяется, эта придонная вода начинает занимать (при том же весе) несколько больший объем, а потому «всплывает» на поверхность — в соответствии с законом Архимеда. Холодные и, соответственно, «тяжелые» поверхностные слои «тонут», занимая место всплывших у источника тепла. Так образуется круговорот, называемый конвекционным током, который будет работать до тех пор, пока вся вода в сосуде не прогреется до одинаковой температуры.

Этот тип конвекционного процесса (который мы только что описали) называют тепловой конвекцией. Г. Хесс предполагал, что она-то и происходит в мантии. Однако в последнее время геофизики отводят главную роль не тепловой, а фазовой конвекции. Дело в том, что существуют и другие (помимо нагрева) способы создать в среде архимедовы силы плавучести, которые породят конвекционный ток. Вспомним описанный в главе 2 процесс гравитационной дифференциации недр. Внутренние слои мантии, потерявшие при контакте с поверхностью ядра часть «ядерного» (богатого железом) вещества, обладают пониженной плотностью и положительной плавучестью; внешние слои мантии, напротив, уплотнились в результате выплавки из них «легкого», силикатного, вещества земной коры и обладают отрицательной плавучестью. Под действием этих архимедовых сил плавучести в мантии и развиваются крайне медленные (порядка нескольких сантиметров в год) конвекционные токи.

Объем вещества, охваченный конвекционным током, называют конвективной ячейкой. Весь объем греющегося чайника представляет собой единую ячейку. Если же мы станем нагревать широкий таз двумя удаленными друг от друга горелками, то у нас возникнут две относительно независимые системы циркуляции воды, взаимодействующие между собой. Ячейки бывают двух типов — открытые и закрытые. По краям открытых ячеек происходит подъем, а в центре — опускание вещества, т.е. в поверхностном слое вещество движется от краев к центру, а в придонном — от центра к краям; в закрытых ячейках, соответственно, все наоборот (рис. 11).

Литосферные плиты с «впаянными» в них континентами оказываются вовлеченными в движение вещества мантии в поверхностном слое конвективных ячеек, перемещаются вместе с ним (мантийным веществом) от областей его подъема к областям опускания (сравните: в кастрюле с кипящим молоком — ячейке закрытого типа — пенка собирается у стенок). В толстостенной сферической оболочке (каковой является мантия планеты) лишь две схемы организации конвекционного процесса могут быть относительно устойчивы. Одной, более простой, будет единственная ячейка, охватывающая собою всю мантию, с одним полюсом подъема вещества и одним же полюсом его опускания. В этом случае континенты собираются воедино вокруг полюса опускания, освобождая вокруг полюса подъема «пустое» океанское — полушарие; такая ситуация существовала, например, во времена Пангеи.

Рис. 11. Возникновение конвективной ячейки в нагреваемой жидкости — стрелками указано направление токов (слева вид сбоку, справа вид сверху): а — ячейка закрытого типа; б — ячейка открытого типа; в — двухъячеистая конвекция (две ячейки открытого типа)

Другая, более сложная, схема действует в наши дни. Это пара открытых ячеек типа «лоскутов теннисного мяча» — очень точное и наглядное определение. Теннисный мяч состоит из двух половинок, соединенных между собой так, что соединяющий их шов волнообразно изогнут относительно экватора двумя гребнями и двумя ложбинами; лоскуты теннисного мяча (в отличие от детского резинового) вытянуты, и их продольные оси взаимно перпендикулярны (рис. 12). Зону подъема вещества (являющуюся одновременно и границей между этими ячейками открытого типа — тот самый волнообразно изогнутый «шов») и составляет глобальная система срединно-океанических хребтов. Зонами же опускания при такой схеме являются продольные оси ячеек (более или менее перпендикулярные друг другу), вдоль которых должны выстраиваться две цепочки материков. Примерно такая картина и наблюдается на Земле в настоящее время одну группу материков образуют Африка, Евразия и Австралия, другую Северная и Южная Америка и Антарктида. (Заметим, что в принципе возможна и такая двухъячеистая конвекция, когда граница между ячейками полностью совпадает с экватором планеты, однако это будет просто частный случай крайне малого искривления «шва».)

Рис. 12. Схема организации конвекционного процесса: а — теннисный мяч, состоящий из двух лоскутов; б — схема поверхности планеты, имеющей две конвективные ячейки: «шов» — линия подъема мантийного вещества (срединно-океанические хребты), материки выстраиваются вдоль линии опускания мантийного вещества (оси каждого из лоскутов); в — поверхность современной Земли (заштрихован американо-антарктический «лоскут») (по Монину, 1980)

При одноячеистой конвекции положение полюсов подъема и опускания вещества всегда будет несколько отличаться от идеального (точно по диаметру планеты); там, где соединяющие их «меридианы» будут самыми длинными, образуется застойная область, в которой вещество не теряет железа и потому постепенно оказывается тяжелее окружающей его среды. Через некоторое время оно «проваливается» вглубь мантии, создавая второй полюс опускания и превращая конвекцию в двухъячеистую. Двухъячеистая конвекция постепенно ослабляется и затем переходит в одноячеистую (одна из ячеек как бы «съедает» другую), и конвекционный цикл начинается заново. Таким образом, взаиморасположение континентов определяется фазой конвекционного цикла в мантии — и наоборот: фаза конвекционного цикла, имевшая место в некую геологическую эпоху, может быть определена исходя из взаиморасположения континентов, реконструированного палеомагнитными, палеоклиматологическими и другими методами. Понятно, что все эти изменения весьма существенно влияют на климат соответствующей эпохи, а через него — на функционирование ее биосферы.

ГЛАВА 4

Происхождение жизни: абиогенез и панспермия. Гиперцикл. Геохимический подход к проблеме

Рассмотрев вопросы, связанные с эволюцией самой Земли, мы приступаем теперь к изучению эволюции жизни на ней. Сразу оговорюсь: я не собираюсь ни углубляться в дебри определений того, что такое «жизнь», ни обсуждать чисто химические аспекты этого явления — это увело бы нас слишком далеко от темы спецкурса.[8] Наш подход к проблеме жизни на Земле будет сугубо функциональным, и в его рамках нам следует принять одно аксиоматичное утверждение: эволюция биосферы и составляющих ее экосистем идет в целом в сторону возникновения все более совершенных (т.е. устойчивых и экономных) круговоротов вещества и энергии. Совершенствование циклов направлено на то, чтобы минимизировать безвозвратные потери биологических систем: экосистема стремится препятствовать вымыванию микроэлементов и захоронению неокисленного углерода, переводить воду из поверхностного стока в подземный и т.д. Поэтому с общепланетарной точки зрения жизнь следует рассматривать как способ стабилизации существующих на планете геохимических циклов.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату