наружный слой (несколько миллиметров) покрова Луны обладает столь высокой пористостью, какой не обладает ни один из земных грунтов. Подобную пористость имеют лишь искусственные губкообразные материалы с очень тонкими непрозрачными стенками, а также материалы, напоминающие мох со сложной ветвистой структурой. Этот вывод на долгие годы был положен в основу многих гипотез о возможном строении покрова Луны. Исследования инфракрасного излучения Луны показали, что его теплопроводность в сотни раз меньше теплопроводности земных горных пород и подтвердили вывод о высокой пористости уже более толстого (до 10 см) наружного слоя покрова Луны. Оценка свойств покрова Луны на еще большую глубину впервые была сделана В. С. Троицким и его сотрудниками. Путем регистрации радиоизлучения Луны они установили, что средняя плотность покрова Луны постепенно увеличивается. Так, на глубине до 4 см она может быть принята равной 0,6 г/см3, на глубине до 3 м — 1 г/см3, на глубине до 6 м— 1,5–2 г/см3. Эти данные относились ко всему диску Луны.
Физические свойства поверхности Луны использовались для разработки гипотез о строении покрова Луны. Однако в результате различного понимания процессов формирования покрова Луны и характера воздействия на него внешних (экзогенных) и внутренних (эндогенных) факторов данные наземных наблюдений по разному интерпретировались и привели к различным представлениям о строении покрова Луны.
Преобладающими были гипотезы о чрезвычайно пористом, пенистом, но твердом, как бы застывшем лавовом покрове Луны (В. С. Троицкий, Г. Койпер). Существовала также гипотеза о ноздреватом, губчатом строении покрова Луны, сложенного из спекшегося шлака (Н. Н. Сытинская), о рыхлом зернистом покрове (Н. П. Барабашов). В то же время упорно отстаивалась гипотеза пылевого покрова Луны, чрезвычайно рыхлого на глубину в несколько километров (Т. Голд).
Ожидалось, что детальное фотографирование поверхности Луны с помощью космических аппаратов снимет эти противоречия. В США в 1964–1965 гг. был проведен запуск серии аппаратов «Рейнджер», которые передавали телевизионные изображения поверхности Луны вплоть до их удара о поверхность Луны. На снимках, полученных с высоты вплоть до 300 м от поверхности, можно было различить детали с размерами до 0,5 м (тогда как на снимках с Земли наименьший размер составлял 300 м).
Однако анализ многочисленных (десятки тысяч) изображений не привел к однозначным представлениям о строении покрова Луны: несмотря на единство взглядов о высокой пористости покрова Луны, мнения о его прочности оставались существенно различными.
Так, например, в 1965 г. на конференции, организованной НАСА, возникли резкие разногласия по вопросу о несущей способности верхнего покрова Луны и ее зависимости от глубины. Названную Г. Койпером величину 1 кгс/см2 большинство участников конференции считали завышенной и предлагали ее снизить на 2–3 порядка.
Стала очевидной необходимость применения надежных инженерных методов определения механических свойств грунтов. Но для проведения этих исследований, в свою очередь, было необходимо осуществить мягкую посадку на Луну.
Определение физико-механических свойств наружного покрова Луны. Физико- механические характеристики необходимы были прежде всего для решения таких первоочередных технических проблем, связанных с освоением Луны, как обеспечение мягкой посадки на Луну и передвижения по ее поверхности. Важное научное значение этих характеристик состоит также в том, что они могут быть использованы в качестве геологических показателей условий формирования и существования покрова Луны.
Первые рекогносцировочные эксперименты были выполнены с помощью советских автоматических станций «Луна-9» и «Луна-13» и американских автоматических аппаратов серии «Сервейер». Выдающимся научно-техническим достижением стало осуществление мягкой посадки на Луну.
Впервые эту посадку совершила советская автоматическая станция «Луна-9».
В связи с тем что прочность покрова Луны, по существу, не была известна, конструкция станции «Луны-9» позволяла осуществить ее посадку как на весьма слабые пылевые грунты, так и на высокопрочные скальные горные породы (рис. 14).
Рис. 14. Схема посадок станции «Луна-9»:
1 — торможение лунной ракеты и наполнение газом эластичных мешков посадочного устройства; 2 — автоматический аппарат в посадочном устройстве на поверхности Луны; 3 — эластичные мешки после разделения; 4 — автоматический аппарат после отделения эластичных мешков (перед раскрытием антенн)
Общие представления о механических свойствах лунного грунта в месте посадки «Луны-9» были получены благодаря успешной мягкой посадке, которая показала, что грунт достаточно прочен для того, чтобы выдержать первый удар станции, находящейся в амортизационной оболочке, а также второй — при освобождении металлического контейнера из амортизаторов.
Первые приборы для измерения свойств покрова Луны были установлены на станции «Луна-13», которая опустилась на поверхность Луны в Океане Бурь 24 декабря 1966 г. Станция была оборудована тремя приборами для определения механических свойств грунта: пенетрометром, радиационным гамма- плотномером и динамографом. Последний был жестко укреплен внутри корпуса станции и измерял ускорения, возникавшие в процессе соударения станции с поверхностью Луны. Пенетрометр и плотномер были после посадки автоматически установлены на поверхность грунта в 1,5 м от корпуса станции.
Пенетрометр с помощью реактивного двигателя твердого топлива осуществил погружение в лунный грунт индентора и измерил возникающее сопротивление грунта.
Радиационный гамма-плотномер, предназначенный для определения плотности лунного грунта, состоял из блока датчиков, который автоматически устанавливался на поверхность грунта (рис. 15) и регистрирующего блока, находившегося внутри корпуса станции. Принятая схема прибора предусматривала облучение поверхности грунта потоком гамма-квантов от радиоактивного источника — цезия-137 и регистрацию рассеянного излучения, интенсивность которого зависит от плотности покрова Луны.
Рис. 15. Блок датчиков гамма-плотномера, с помощью которого были проведены первые физические измерения на поверхности Луны
Исследования показали, что грунт в месте посадки по своему взаимодействию с применяющимся аппаратом ближе всего подходит к несвязному грунту средней плотности. Он состоит из зернистого слабосвязного материала. Средняя плотность верхних 15 см грунта не менее 0,8 г/см3, сцепление в пределах верхних 5 см составляло около 0,005 кгс/см2, а несущая способность равнялась 0,68 кгс/см2.
Значительный вклад в определение прочности покрова Луны дали эксперименты, выполненные на американских станциях «Сервейер» в 1966–1968 гг. Интересные данные были получены на основе анализа динамики соударения аппаратов с грунтом, из опытов по автоматическому рытью траншеек (глубиной до 18 см). Полученные результаты в основном совпали и подтвердили результаты измерений, проведенных на «Луне-13».
Исследования физико-механических свойств покрова Луны в отдельных точках ее поверхности подготовили возможность высадки на Луну космонавтов и передвижения по ней транспортных средств.
В 1969–1972 гг. на Луну была произведена высадка шести экспедиций американских космонавтов в рамках программы «Аполлон». В общей сложности космонавты находились на Луне около 300 ч, из них примерно 80 ч они работали непосредственно на ее поверхности вне корабля «Аполлон».
Для исследования покрова Луны космонавты использовали геологическое и буровое снаряжение, фото— и кинокамеры. В комплект геологического снаряжения входили: лопатка, решетчатые совок и захват, геологический молоток и удлинительная ручка к ним, а также трубчатые грунтоносы для отбора образцов грунта и их — герметизации, щетка для очистки образцов, объединенная с лупой и разметчиком образцов, пружинные весы. Для сбора образцов использовались мешочки из тефлона и герметичный контейнер для них, а также специальные контейнеры, обеспечивающие сохранение высокого вакуума в течение длительного времени.