Почему так красива, правильна форма кристалла? Грани его блестящие и ровные и выглядят так, как будто бы над кристаллом поработал искусный шлифовальщик. Отдельные части кристалла повторяют друг друга, образуя красивую симметричную фигуру.
Эта исключительная правильность кристаллов была знакома уже людям древности. Но представления древних учёных о кристаллах мало отличались от сказок и легенд, сочинённых поэтами, воображение которых было пленено красотой кристаллов. Верили, что хрусталь образуется изо льда, а алмаз – из хрусталя. Кристаллы наделялись множеством таинственных свойств: исцелять от болезней, предохранять от яда, влиять на судьбу человека…
Лишь в XVII–XVIII веках появились первые научные взгляды на природу кристаллов. Представление о них даёт рисунок 11, заимствованный из книги XVIII века. По мнению её автора, кристалл построен из мельчайших «кирпичиков», плотно приложенных друг к другу. Эта мысль довольно естественна. Разобьём сильным ударом кристалл кальцита (углекислый кальций). Он разлетится на кусочки разной величины. Рассматривая их внимательно, мы обнаружим, что эти куски имеют правильную форму, вполне подобную форме большого кристалла – их родителя. Наверно, рассуждал учёный, и дальнейшее дробление кристалла будет происходить таким же образом, пока мы не дойдём до мельчайшего, невидимого глазом кирпичика, представляющего кристалл данного вещества. Эти кирпичики так малы, что построенные из них ступенчатые «лестницы» – грани кристалла кажутся нам безукоризненно гладкими. Ну, а дальше, что же представляет собой этот «последний» кирпич? На такой вопрос учёный того времени ответить не мог.
Рис. 11. Справа кристалл, слева его строение, по мысли учёных XVIII века.
Эта «кирпичная» теория строения кристалла принесла науке большую пользу. Она объяснила происхождение прямых рёбер и граней кристалла: при росте кристалла одни кирпичики подстраиваются к другим, и грань растёт, как стена дома, выкладываемая руками невидимого каменщика. С точки зрения «кирпичной» теории понятно, что правильная форма кристалла есть проявление его внутренних свойств. Из большого кристалла, скажем каменной соли, можно выточить шар. Грани и рёбра кристалла исчезли, но на самом деле они существуют, хотя и в скрытом виде. Начнём медленно растворять шар из каменной соли. Мы увидим, как по мере растворения из шара образуется… куб, то есть та форма, которая свойственна кристаллу данного вещества (см. стр. 54).
5. Поговорим об обоях
Теперь мы хотим дать читателю современные представления о природе кристалла. Для этого сначала нам придётся поговорить… об обоях. Посмотрите на рисунок 12. На нём изображена девочка, играющая в мяч. И не одна девочка, а много совершенно одинаковых фигурок. Найдём на этом рисунке обоев тот наименьший кусок, который надо нарисовать художнику, иначе говоря, тот кусок, простым перекладыванием которого можно составить все обои. Чтобы выделить такой кусок, проведём из любой точки рисунка, например из центра мячика, две линии, соединяющие выбранный мячик с двумя соседними. На этих линиях можно построить, как это видно на нашем рисунке, параллелограмм. Совершенно ясно, что перекладываниям этого кусочка в направлении основных исходных линий мы можем составить весь рисунок обоев.
Рис. 12. Рисунок этих простеньких обоев помогает нам понять решетчатое строение кристаллов.
Этот наименьший кусок может быть выбран по-разному: из рисунка сразу видно, что можно выбрать несколько разных параллелограммов, каждый из которых содержит одну фигурку. Подчеркнём, что для нас в данном случае безразлично, будет ли эта фигурка внутри выделенного куска целой или разделённой на части линиями, ограничивающими этот кусок.
Было бы неверным полагать, что, изготовив повторяющуюся на обоях фигурку, художник может считать свою задачу оконченной. Это было бы так лишь в том случае, если составление обоев можно было бы провести единственным способом – прикладыванием к данному кусочку, содержащему одну фигурку, другого такого же, параллельно сдвинутого. Однако кроме этого простейшего способа есть ещё шестнадцать способов заполнения обоев закономерно повторяющимся рисунком, то есть, всего существует 17 типов взаимных расположений фигурок на плоскости. Они показаны на рисунке 13[3] .
Рис. 13. 17 типов симметрии плоского узора; элементарные ячейки выделены.
В качестве повторяющегося рисунка здесь выбрана более простая, но, так же как и на рисунке 12,
Мы видим, что, например, в первых трёх случаях рисунок не обладает зеркальной плоскостью симметрии – нельзя поставить вертикальное зеркало так, чтобы одна часть рисунка была «отражением» другой части. Напротив, в случаях
Плоскости и оси симметрии наших рисунков выступают не по одиночке, а параллельными семействами. Если мы нашли одну точку, через которую можно провести ось (или плоскость) симметрии, то найдём быстро и соседнюю, и далее на таком же расстоянии третью и четвёртую и т.д. точки, через которые проходят такие же оси (или плоскости) симметрии.
Выберем теперь на этих узорах такой наименьший кусок, перемещая который
Во-первых, этот наименьший кусок, или, как его принято называть,
Во-вторых, на элементарную ячейку в разных случаях приходится различное число фигурок. Это число равно 1 для случая
Принято выбирать элементарные ячейки так, чтобы они были наименьшими, но отражали бы симметрию, присущую узору в целом. Так, в случае
Однако некоторая свобода выбора в расположении элементарной ячейки всегда имеется. Так, совершенно безразлично, поместим ли мы углы ячейки в местах «головок» или «хвостиков» фигурок или же где-либо на белом поле между ними. В случаях
Способы заполнения элементарной ячейки отдельными фигурками во всех случаях различны. Этим прежде всего и отличаются друг от друга изображённые 17 случаев. Таким образом, художник, выполнивший повторяющийся рисунок обоев, должен указать, кроме того, каким из 17 способов надо построить обои из его рисунка. Например, для случая
17