теле клетки другого нейрона, вызывая, в свою очередь, дальнейшие химические и электрические сигналы. Все эти этапы от выделения медиатора до его попадания в другой нейрон — занимают около тысячной доли секунды.
Синапсы — необходимые компоненты передачи информации в нашем мозгу. Наши мысли, способности, функции и даже наша индивидуальность — все это определяется тем, насколько крепки наши синаптические соединения, каково их количество и где они расположены. Так же, как соединения в компьютере связывают между собой отдельные внутренние части этого механизма, так и нейроны в основном пользуются синапсами для взаимного общения в мозге. Лишь у небольшой части аксонов синапсы располагаются вне мозга или позвоночника и посылают свои сигналы в другие органы тела, в том числе и в мускулы.
Помимо высокой скорости, синапсы отличаются еще и крошечным размером. Типичный дендрит нейрона в диаметре имеет около двух десятых миллиметра и способен при этом получать до 200 000 синаптических сигналов от других нейронов. Вы только представьте — один кубический миллиметр вашего мозга содержит миллиард синапсов! Отдельные синапсы настолько малы и ненадежны, что у них едва хватает мощности функционировать, и прибывающие импульсы часто даже не вызывают выделения нейротрансмиттера.
Конечно, странно, что синапсы настолько малы, что иногда не работают должным образом, но это не редкость. Синапсы достигают приблизительно одинакового минимального размера у различных видов животных, включая мышей и человека. Никто точно не знает, почему отдельные синапсы эволюционировали до столь маленьких размеров и стали настолько ненадежными, но одной из вероятных причин может быть то, что мозг станет работать лучше при условии нахождения в нем бесчисленного их количества. И крохотный размер синапсов оказывается оптимальным вариантом, при котором наибольшее количество функций способно разместиться в ограниченном пространстве.
В 1921 году, когда еще не было известно, как взаимодействуют нейроны или даже клетки, немецкий ученый Отто Леви заметил, как именно сердце получает сигналы о том, что надо ускорить или замедлить частоту сокращений. Он был убежден в том, что блуждающий нера — длинный нерв, идущий от ствола головного мозга и соединяющийся прямо с сердцем, — выделяет субстанцию для замедления сердцебиения. В своей лаборатории Леви тщательно исследовал сердца лягушек с присоединенным блуждающим нервом. Когда он стимулировал нерв электрическим сигналом, сердце начинало сокращаться медленнее. Как это происходило? Гипотеза Леви заключалась в том, что из нерва выделялось нечто, что и производило этот эффект, но он не знал, как проверить эту идею экспериментально.
Забуксовав, он поступил так, как многие в подобных случаях: отложил решение на потом. Однажды ночью его осенило: он понял, как провести эксперимент. Успокоенный, он уснул. Наутро... ничего. Он ничего не мог вспомнить об эксперименте. В следующий раз, увидев этот сон, Леви не поленился и записал идею на бумаге. Увы, на следующее утро он не смог прочитать написанное. К счастью, сон приснился ему еще раз, и Леви не стал ждать утра: он встал, пошел в лабораторию и провел эксперимент, который принес ему Нобелевскую премию по физиологии и медицине в 1936 году. Эксперимент был прост. Леви поместил два сердца лягушек в разные сосуды, соединенные узкой трубкой. К одному сердцу по-прежнему был присоединен блуждающий нерв. При электрической стимуляции это сердце начинало биться медленнее. Затем, спустя некоторое время, второе сердце тоже замедляло свой ритм. Этот эксперимент продемонстрировал существование того, что он прозаично назвал Vagusstoff — субстанция (stoff), выделяемая из блуждающего нерва (vagus) одного сердца лягушки для того, чтобы замедлить биение второго сердца. Vagusstoff теперь называется ацетилхолином, и это один из десятков нейромедиаторов, которыми пользуются нейроны для взаимодействия.
Нейронам приходится выполнять очень специализированные задания. Каждый нейрон отвечает за небольшое количество функций — например, различение конкретного звука, распознавание чьего-то лица, выполнение определенного движения или другой процесс, невидимый снаружи. В любой конкретный момент лишь небольшое количество нейронов, расположенных в разных частях вашего мозга, пребывает в состоянии активности. Их количество всегда колеблется, и процесс мышления зависит от того, какие нейроны активны и что они передают друг другу и окружающему миру.
Нейроны всех животных объединяются в похожие группы, отвечающие за одни и те же цели — например, распознавание движущихся объектов или регулирование движений глаз. В нашем мозге в каждой группе может быть несколько миллиардов нейронов и множество подгрупп. У крыс — миллионы нейронов и меньшее количество подгрупп, у осьминога или насекомого — тысячи нейронов (хотя в этом крохотном мозге различные части отдельных нейронов могут выполнять несколько видов деятельности одновременно). В каждой из этих групп находятся немного отличающиеся нейроны, определенные паттерны[1] связей и связи с другими мозговыми структурами.
Сначала ученые узнавали о функциях различных частей мозга, наблюдая за людьми с повреждениями психики. Как это ни печально, но Первая мировая война стала богатейшим источником подобной информации. Солдаты часто выживали после ранений, поскольку летящие на большой скорости пули прижигали их раны, предотвращая смерть от потери крови и заражения. Однако в результате травмы у солдат проявлялись самые разнообразные симптомы повреждения психики, зависевшие от той части головного мозга, которая была поражена. Современные неврологи до сих пор публикуют обследования пациентов с повреждением мозга, в основном после инсульта. Некоторые пациенты с редко встречающимися симптомами даже смогли обеспечить свое существование, принимая участие в оплачиваемых исследованиях.
Люди всегда описывают мозг, сравнивая его с новейшими технологиями — с паровым двигателем, телефонным коммутатором или даже с катапультой. В наше время люди обычно говорят о мозге так, как если бы он представлял собой определенный тип биологического компьютера с розовым мягким процессором и «программным обеспечением», которое создается жизненным опытом. Но компьютеры были созданы для того, чтобы работать как маленькие заводы, на которых действия происходят согласно общему плану и установленному логическому порядку. Мозг же по способу своей работы больше напоминает переполненный китайский ресторан: он набит битком и полон суеты, люди бегают по нему без особых причин, но каким-то образом в конце асе оказывается сделано. Компьютеры последовательно обрабатывают информацию, тогда как мозг справляется с разнообразной информацией, поступающей параллельно по многим каналам. Поскольку биологические системы создаются путем естественного отбора, в них имеются пласты систем, которые изначально были созданы для одной цели, а затем адаптированы под другую, даже если они и не работают идеально. Программист начал бы в таком случае писать новую программу, но в ходе эволюции проще адаптировать старую систему к новым целям, чем создать что-то абсолютно новое.
Ученые выявляли возможности нейронов, наблюдая их активность в различных условиях — стимулируя их или отслеживая их связи с другими частями головного мозга. Например, моторные нейроны в спинном мозге получают сигналы от нейронов коры, которые отвечают за основные движения. В свою очередь нейроны спинного мозга посылают сигналы мускулам, вызывая их сокращения. Если ученые начинают стимулировать с помощью электричества только нейроны спинного мозга, то сокращаются те же самые мускулы. Полученные результаты дают понять, что моторные нейроны спинного мозга отвечают за выполнение основных двигательных команд, которые создаются на более высоком уровне головного мозга. Однако до сих пор осталось немало противоречий в суждениях о том, какой именно аспект движений обусловливается этими командами.
Чтобы немного разобраться в собственном мозге, нам потребуется кратко описать его основные части и их функции.
Ствол мозга находится у самого основания — там, где он прикрепляется к