Как я и предполагал, в павильоне действительно играли в числовую игру, и даже не в одну, а во многие. Хотя все они, так или иначе, были связаны с девятью цифрами десятичной системы счисления – той самой, которой мы с вами пользуемся. Но не ошиблась и девочка, когда думала, что фишки – это печенье. Здешние фишки и впрямь выпекают в кондитерской. Все они круглые, ароматные, румяные, только вместо рисунка на них цифры. По одной на каждой. Раздают их при входе в целлофановых пакетиках. В каждом пакетике набор из десяти сдобных кругляшек с цифрами от нуля до девятки включительно. Получив такой набор, посетитель занимает место у большого стола и раскладывает свои фишки на чистой бумажной салфетке.

Вы, конечно, хотите знать, где же обещанный чай? Не торопитесь. Чай подадут позже, когда игра окончится. И по-моему, это очень предусмотрительно. Ведь если чай принести сразу, все тут же позабудут об игре и через минуту от фишек ничего не останется. Потому что фишки с чаем – это вам не фишки всухомятку! Да и чай после задачи – это не чай до задачи. Сознание честно выполненного долга делает его вдвое… нет, втрое вкуснее.

Я не обмолвился, назвав игру задачей. Здешние игры ничем от задач не отличаются. Нам, в частности, предложили вычислить, сколько натуральных чисел можно составить из десяти фишек. Задача полезная, и я предложил заняться ею сообща.

Прежде чем приступить к решению, мне захотелось проверить, хорошо ли усвоила девочка наши утренние беседы в Столе находок, и я спросил, что ей известно о натуральных числах.

– Натуральные числа – это печенье! – выпалила она.

На первый взгляд, ответ несуразный. Но на самом дело он недалёк от истины.

Натуральные числа – самые древние на земле. Они появились тогда, когда людям понадобилось сосчитать созданное натурой, то есть природой: коз, овец. Звериные шкуры. Плоды. Деревья. То, чем питались, прикрывали наготу, обогревались в стужу, торговали. Вернее, менялись. Потому что в те далёкие времена денег ещё не было. И с этой точки зрения печенье, да ещё перенумерованное, несомненно, относится к натуральным числам. Хотя вообще-то название это условно. Потому что числа обладают одной удивительной способностью.

Как правило, они появляются на свет, когда мы пересчитываем вполне определённые, или, как говорят, конкретные предметы, но потом от этих предметов отделяются, а лучше сказать – отвлекаются, и продолжают жить отвлечённой, совершенно самостоятельной жизнью. При этом происходят вещи необычайные, поразительные и для нас с вами далеко не безразличные. Числа помогают нам познавать мир. Благодаря им учёные обнаруживают доселе незримые планеты, открывают неизвестные законы, создают сложнейшие машины. Словом, отвлечённые числа сильнейшим образом влияют на конкретную действительность… Впрочем, об этом я девочке ещё не рассказывал. Почему? Да потому, что всему своё время. Так что вернёмся лучше к нашей задаче.

Первым её решил Главный терятель, хотя и неверно. Он рассуждал так: какое самое большое натуральное число можно составить из десяти цифр? Ясно, что десятизначное. А наибольшее десятизначное число равно десяти миллиардам без единицы: 9 999 999 999. Это-то и есть число всех натуральных чисел до десятизначных включительно.

К сожалению, Главный терятель не понял задачи. Ведь речь в ней вовсе не обо всех натуральных числах до десятизначных включительно, а лишь о тех, которые можно составить из десяти фишек! Не говорю уже о том, что среди этих десяти фишек всего одна девятка, а в его числе – десять…

– Вот что значит – начать не с того бока, – укоризненно вздохнул я.

– А мы начнём с того, – сказала девочка. – Как вы думаете, сколько однозначных натуральных чисел можно получить из десяти фишек?

– Смешно! – пожал плечами Главный терятель, который успел уже перенять любимое девочкино словечко. – Где десять однозначных фишек, там и десять однозначных чисел.

И тут под столом громко затявкал Пуся.

– Что это с ним? – забеспокоился Главный терятель. – По-моему, он кашляет.

– А по-моему, смеётся, – возразил я. – Наверное, заметил, что вы опять ошиблись. К вашему сведению: нуль к натуральным числам не относится. А потому однозначных натуральных чисел девять.

– Я же говорила, что Пуся – необыкновенная собака, – сказала девочка с гордостью. – Это она привела нас к истине.

– На то она и Главная ищейка! – заключил я и предложил записать наше первое достижение на бумажных салфетках.

Следующий вопрос, естественно, касался двузначных чисел, и Пусе пришлось опять хохотать, потому что Главный терятель повторил свою первую ошибку. Он рассуждал так: самое большое двузначное число – 99. Но в него входят 9 однозначных. Значит, всего двузначных 90. К сожалению, он не учёл, что среди этих девяноста имеется девять чисел с одинаковыми цифрами: 11, 22, 33, 44, 55, 66, 77, 88, 99. А по условию, цифры в числе могут быть только разные. И стало быть, двузначных натуральных чисел только восемьдесят одно.

Главного терятеля это озадачило.

– Позвольте, позвольте, – запальчиво сказал он, – когда я приобщил к натуральным числам нуль, мне заявили, что он к таковым не относится. Но ведь и среди двузначных натуральных есть девять чисел с нулём: 10, 20, 30, 40, 50, 60, 70, 80, 90. Выходит, их тоже надо вычесть.

Я думал, что теперь хохотать будет не только Пуся, но и девочка. Но, против ожидания, она жалостливо вздохнула.

– Бедный! – сказала она, сочувственно глядя на Главного терятеля. – Неужели вы забыли, какая разница между числами и цифрами? Когда речь шла об однозначных числах, вы имели в виду нуль как число. Теперь мы перешли к двузначным, и в этом случае нуль уже не число, а цифра, означающая, что в разряде пусто…

Нет, до чего милая девочка! Недаром я к ней привязался. Не только весёлая, не только смышлёная, но и добрая. А доброта – великая сила. За примером недалеко ходить. Дружеское сочувствие подействовало на Главного терятеля самым благотворным образом, и он совершенно неожиданно для нас. а также для себя самого выдал весьма дельное замечании.

– Смотрите-ка, – сказал он, – натуральных двузначных чисел – восемьдесят одно. Но что такое 81? Это же 9, умноженное на 9…

– Очень кстати замечено, – похвалил я.

– Почему кстати? – поинтересовалась девочка.

– Сейчас поймёшь. Ведь мы как раз переходим к трёхзначным числам… А это вам не двузначные.

– Уж конечно, – поддакнул Главный терятель. – Во-нервых, их гораздо больше.

А во-вторых? – поинтересовался я. – Не знаете? Во-вторых, среди двузначных чисел попадаются такие, что состоят из двух одинаковых цифр. А среди трёхзначных сверх того есть ещё и такие, что состоят из трёх одинаковых. В числе 552 – две одинаковые цифры, а в числе 555 – три. Так что…

– Так что считать нам не пересчитать, – подхватила девочка.

– Но угадала, засмеялся я. – Так что необходимо найти правило, которое поможет нам и не считать и не пересчитывать. И для этого вернёмся немного обратно. Сколько у нас однозначных чисел? Девять. Теперь подумаем, как из количества однозначных чисел получить количество двузначных? Очевидно, для этого придётся к каждому однозначному числу последовательно приставлять по одной из оставшихся фишек. Начнём с единицы. Сперва приставим к ней 0…

– Затем – единицу, – подсказал Главный терятель.

При этих словах Пуся опять засмеялся, а девочка сказала, что единицы у нас уже нет: ведь к ней-то мы и приставляем оставшиеся фишки и получаем при этом вот что: 10, 12, 13, 14, 15. 16, 17, 18, 19.

– Вот вам и все двузначные числа, начинающиеся с единицы, – подытожил я. – Нетрудно заметить, что их девять. Далее то же проделываем с однозначным числом 2 и получаем ещё девять двузначных чисел: 20, 21, 23, 24, 25, 26, 27, 28, 29…

– Как интересно! – загорелась девочка. – Теперь то же самое проделаем с числом 3, потом с числом 4…

– Но зачем? – возразил я, – Ведь мы уже заметили, что из каждого однозначного числа получается девять двузначных. И так как всего однозначных чисел 9, нам остаётся лишь помножить 9 на 9. Вот почему так кстати оказалось замечание нашего дорогого Главного терятеля. Ведь именно он подметил, что 81 – это

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату