высокочастотных токов заземление — по крайней мере, когда эдс токов высока, — лучше, чем обратная цепь. С этим можно поспорить, когда используются низкочастотные и постоянные токи по причине их разрушительного химического воздействия, а также помех, которые они создают для окружающих электроприборов; но в случае с высокочастотными токами эти факторы практически отсутствуют. И всё же, даже заземление становится излишним, когда эдс достаточно высока, так как вскоре будет достигнут рубеж, когда ток можно будет более экономично передавать по разомкнутой, а не замкнутой цепи.
Какой бы отдаленной ни казалась возможность промышленного использования такого способа передачи тому, кто не опытен в экспериментах такого рода, она не покажется таковой тому, кто посвятил некоторое время исследованиям в данном направлении. И в самом деле, я не понимаю, почему такая схема может показаться непрактичной. Не вижу также, зачем обязательно надо применять токи высокой частоты, ибо если достичь потенциала в 30 000 В, передача через один провод может осуществляться и при низкой частоте, мною проводились опыты в этом направлении.
Когда частота очень высока, в лабораторных условиях оказалось довольно легко регулировать эффекты так, как показано на рисунке 17. Здесь мы имеем две первичные обмотки Р и Р, каждая из которых одним концом соединена с проводом заземления L, а другим — с пластинами конденсатора С и С соответственно. Рядом с ними помещаются другие пластины конденсатора С1 и Ся причем первая соединена с проводом L, а вторая с большой изолированной пластиной Рг На первичные обмотки намотаны вторичные из проволоки S и S1 соединенные с устройствами d и / соответственно. При изменении расстояния между пластинами С и С1 и С и C1 меняется сила
Рис. 18
тока на обмотках S и Sг Интересна большая чувствительность устройства, при малейшем изменении расстояния пластин конденсатора сила тока в обмотках значительно меняется. Чувствительность можно довести до крайнего значения, так настроив частоту, что сама первичная обмотка, когда ничего не соединено с ее свободным концом, удовлетворяет, совместно с замкнутой вторичной, условиям резонанса. При таких условиях даже небольшое изменение емкости свободного вывода приводит к большим изменениям. Например, мне удалось так настроить устройство, что простое приближение человека к катушкам производит значительное изменение яркости накала ламп, соединенных со вторичной обмоткой. Такие наблюдения и опыты в настоящее время, конечно, имеют чисто научный интерес, но вскоре они смогут иметь и практическую пользу.
Очень высокие частоты, конечно, непрактичны для использования в моторах, так как требуют применения железного сердечника. Но можно использовать броски низкой частоты и так добиться преимущества применения высокочастотных токов, когда железный сердечник не перестанет чувствовать изменения и это не повлечет значительных затрат энергии в нем. Я обнаружил, что вполне практично при помощи таких низкочастотных бросковых разрядов эксплуатировать моторы переменного тока. Группа таких моторов была разработана мной несколько лет назад, они содержат замкнутые вторичные цепи и вращаются довольно резво, когда разряды направлены через возбуждающие катушки. Одной из причин, почему такой мотор хорошо работает при таких разрядах, является сдвиг по фазе между первичными и вторичными контурами в 90 градусов, чего не бывает при гармонических колебаниях низкочастотных токов. Мне будет небезынтересно продемонстрировать опыт с простым мотором такого типа, поскольку, по всеобщему убеждению, разряды не годятся для этих целей. Мотор показан на рисунке 18. Он состоит из железного сердечника i, имеющего пазы, в которые жестко вставлены медные шайбы СС. На небольшом расстоянии от сердечника расположен свободно вращающийся диск D. Сердечник имеет первичную возбуждающую обмотку С1 концы которой а и b соединены с выводами вторичной обмотки S обычного трансформатора, где первичная обмотка Р соединена с генератором G переменного тока низкой или умеренно низкой частоты. Выводы вторичной обмотки S соединены с конденсатором С, который разряжается через искровой промежуток dd, который в свою очередь можно включить последовательно или параллельно с обмоткой C1. Если настройки произведены верно, диск D вращается со значительным усилием и сердечник i не сильно нагревается. Если ток получается от генератора высокой частоты, напротив, сердечник вскоре сильно нагревается, а диск не развивает достаточного усилия. Для правильного проведения опыта следует удостовериться в том, что диск D не вращается до тех пор, пока не произойдет разряд в промежутке dd. Желательно применять большой железный сердечник и конденсатор большой емкости, для того чтобы ослабить наложенные колебания или вовсе избавиться от них. Я обнаружил, что при соблюдении определенных элементарных правил очень практичным является использование последовательных или параллельных моторов постоянного тока, где применяются такие разряды, и это можно делать, используя или не используя обратный провод.
Среди явлений, вызванных электрическим током, возможно, наиболее интересными являются те, что порождены сопротивлением проводника токами, меняющимися с высокой скоростью. В моей первой лекции, прочитанной в Американском институте электроинженеров, я описал несколько поразительных явлений такого характера. Так, я показал, что, когда такие токи или разряды пропускаются через толстый металлический брусок, на его поверхности могут возникнуть точки на расстоянии лишь нескольких дюймов друг от друга, между которыми имеется достаточная разница потенциалов, необходимая для поддержания яркого накала обычной нити лампы. Я также описывал любопытное поведение разреженного газа, окружающего проводник, вследствие таких внезапных бросков тока. Эти явления с той поры были изучены более тщательно, и несколько опытов было бы полезно привести сейчас.
На рисунке 19а В и Bf — толстые медные бруски, нижние концы которых соединены с пластинами конденсатора Си С( соответственно, пластины конденсатора в свою очередь соединены с выводами вторичной обмотки S трансформатора высокого напряжения, первичная обмотка которого Р запи-тана от низковольтной динамо-машины G или обычной сети. Конденсатор, как обычно, разряжается через промежуток dd. Установив быстрые колебания, мне удалось провести следующий любопытный эксперимент. Бруски В и В1 сверху соединялись низковольтной лампой немного ниже помещалась на клеммах СС еще одна 50-вольтовая лампа 12; а еще ниже — 100-вольтовая лампа L; и, наконец, на некотором расстоянии ниже вакуумная трубка Т. После тщательной выверки положения всех устройств стало возможным поддерживать в них соответствующий уровень свечения. И всё же они все были параллельно соединены многочисленными дугами с медными брусками и требовали разного напряжения. Этот эксперимент требует, конечно, тщательной настройки, но после этого его вполне легко поставить.
На рисунках 196 и 19в показаны два других опыта, не требующие столь тщательной настройки параметров. На рисунке 196 показаны две лампы li и 12, первая — на 100 вольт, а вторая — на 50, размещенные на определенном расстоянии одна над другой, причем 100-вольтовая лампа располагается ниже. Когда в искровом промежутке формируется дуга и через бруски ВВ1 подаются