При пониженном давлении, когда воздух более или менее проводит ток, или если воздух достаточно нагрет для того, чтобы стать проводником, тело накаляется сильнее в более просторной колбе, очевидно, потому, что при всех одинаковых условиях испытания, тело отдает больше энергии в большой колбе.
При высокой степени вакуумизации, когда вещество в колбе становится «лучистым», у большой колбы также имеется преимущество, но совсем небольшое.
И, наконец, при крайне высокой степени разряжения, которой нельзя достичь без применения специальной аппаратуры, за исключением случаев, когда сосуд очень мал, нет различимых отличий в степени нагрева.
Эти наблюдения явились результатом нескольких опытов, из которых один, который демонстрирует эффект размера колбы при высокой степени разряжения, можно описать, так как он имеет интересную особенность. Взяли три круглые колбы диаметром 2, 3 и 4 дюйма и в центре каждой поместили нить накаливания одинаковой длины и толщины. В каждой колбе часть нити была соединена с платиновым подводящим проводом, помещенным в стеклянную ножку, впаянную в колбу; при этом, конечно, прилагались все усилия для того, чтобы во всех трех случаях устройство было одинаковым. Каждая была заключена в трубку из полированного алюминия, которая удерживалась пружиной. Назначение этой алюминиевой трубки будет объяснено позже. В каждой колбе часть нити одинаковой длины выступала из металлической трубки. Теперь достаточно сказать, что при таких условиях нити одинаковой длины и толщины — иными словами тела одинакового объема — накаливались. Три колбы были припаяны к стеклянной трубке, соединявшейся с насосом Шпренгеля. При достижении высокой степени разряжения стеклянная трубка была запаяна. Затем был подан ток последовательно к каждой колбе и было обнаружено, что все нити накалились примерно одинаково, разве только самая маленькая колба, расположенная между двумя побольше, светилась немного ярче. Этот результат был ожидаем, так как, когда загоралась каждая из ламп, свечение проходило через две другие, поскольку все три колбы представляли собой один сосуд. Когда все три лампы соединили с катушкой параллельно, в самой большой нить горела ярче всех, в средней немного тусклее, а в самой маленькой нить была немного красной. Затем колбы запаяли и включали отдельно. Яркость нитей теперь была такова, какой должна была быть, исходя из предположения, что отдаваемая энергия пропорциональна поверхности колбы, причем эта поверхность в каждом случае представляет собой одну из пластин конденсатора. Соответственно, разница между самой большой и средней была меньше, чем разница между средней и маленькой колбами.
Во время этого опыта было сделано интересное наблюдение. Все три колбы подвесили на оголенном проводе, соединенном с выводом катушки, большую — на конце провода, маленькую — на некотором расстоянии, а среднюю — на таком же расстоянии от маленькой. Нити в обеих больших лампах горели, как и ожидалось, в то время как в маленькой она не добрала и ожидаемой степени свечения. Это наблюдение заставило меня сменить положение ламп, и тогда я обнаружил, что какая бы лампа ни оказалась в середине, она будет гореть тусклее, чем с краю. Этот загадочный результат, конечно, был отнесен на счет электростатического воздействия ламп друг на друга. Когда их поместили вдали друг от друга или в углах равнобедренного треугольника из медного провода, они горели соответственно своему размеру.
Что касается формы сосуда, то она тоже важна, тем более при высокой степени вакуумирования. Из всех возможных конструкций наиболее предпочтительна шарообразная с телом из тугоплавкого материала внутри. По опыту ясно, что в таком шаре тугоплавкий предмет определенных размеров значительно легче накалить, чем в колбе другой формы. Преимущество также заключается в придании телу накаливания формы шара, по очевидным причинам. В любом случае тело надо поместить в центр, где атомы, отскакивающие от стен, соударяются. Этой цели легче всего достичь в сферической колбе; но она достижима и в цилиндрическом сосуде, где нить или нити расположены на его оси, а возможно и в параболическом сосуде или сферическом, где тугоплавкие части помещены в его фокусе; хотя последнее вряд ли возможно, так как наэлектризованные атомы должны в любом случае нормально отталкиваться от поверхности, с которой они соударяются, если только скорости не крайние, тогда они, возможно, будут следовать общим правилам отражения. Неважно, какой формы сосуд, если воздух откачан слабо, нити, помещенные в любую точку, будут накаливаться одинаково; но если воздух откачан сильно и колба имеет сферическую или грушевидную форму, как обычно, то образуются фокальные точки и нить накаливается сильнее всего в этих точках или поблизости от них.
Для иллюстрации этого эффекта у меня имеются две небольшие одинаковые колбы с разной степенью вакуумирования. При подключении к катушке нить в той колбе, откуда воздух откачан слабо, накаливается одинаково по всей длине, в то время как в последней та часть нити, что расположена ближе к центру колбы, светится гораздо более интенсивно, чем остальные. Любопытно то, что это явление наблюдается, даже если две нити поместить внутрь и каждую соединить с выводом катушки, и, что еще более любопытно, если они расположены рядом, конечно, при условии, что воздух совсем откачан. Во время опытов я заметил, что нити перегорают в определенный момент, и вначале приписывал это качеству угля. Но когда это произошло несколько раз подряд, понял, почему это происходит.
Для того чтобы накалить тугоплавкое тело в колбе, желательно, по причине экономии, чтобы вся переданная в колбу от источника энергия достигла этого тела без потерь; оттуда, и только оттуда, она должна испускаться. Конечно, не подлежит сомнению, что нельзя достичь этой теоретической цели, но при помощи правильной конструкции осветительного прибора можно приблизиться к ее достижению.
По многим причинам накаливаемое тело помещают в центр колбы, обычно оно расположено на стеклянной ножке, через которую проходит подводящий провод. Поскольку потенциал на этом проводе переменный, то разреженный газ вокруг этой ножки подвергается индукции, она нагревается и подвержена бомбардировке. Таким образом, большая часть энергии, предназначенная для освещения, — особенно, когда используется высокая частота, — может теряться. Дабы избежать этих потерь,чили по крайней мере свести их к минимуму, я обычно экранирую разреженный газ от индукции провода, помещая его в трубку из проводника. Сомнений не вызывает, что из всех металлов для этой цели наиболее пригоден алюминий по причине своих многочисленных замечательных свойств. Единственный его недостаток в том, что он легкоплавкий и, следовательно, надо правильно разместить его по отношению к телу накаливания. Обычно изготавливается трубочка, диаметр которой немного меньше диаметра стеклянной ножки, и надевается на нее. Трубочка изготавливается путем оборачивания на токарном станке алюминиевой полосы нужного размера вокруг сердечника, при этом надо зажимать полоску плотно при помощи чистой замши или промокательной бумаги, а сердечник вращать очень быстро. Полоска плотно наматывается вокруг сердечника и таким образом получается двух- или трехслойная трубка. При надевании на ножку давления обычно хватает, чтобы трубочка не соскользнула, но для верности нижнюю кромку стоит загнуть внутрь. Верхний внутренний угол полоски — тот, что ближе всего к телу накаливания, — следует отрезать по диагонали, так как он, находясь ближе всего к источнику тепла, часто заворачивается и почти касается или даже касается подводящего провода или нити, поддерживающей тело накаливания. В таком случае большая часть поступающей в колбу энергии расходуется на нагревание трубочки, и лампа становится бесполезной. Алюминиевая трубочка должна выступать над стеклянной ножкой — на дюйм или два, — в противном случае стекло будет находиться слишком близко к раскаленному предмету, сильно нагреется и станет более или менее сносным проводником и вследствие своей проводимости установит электрический контакт между металлической трубкой и подводящим проводом, причем большая часть энергии, опять же, израсходуется на нагрев последнего. Посему лучше сделать верхний конец трубки диаметром в 1 дюйм или меньше. Для того чтобы еще уменьшить опасность, возникающую от нагревания стеклянной ножки, а также для того, чтобы предотвратить контакт между металлической трубкой и электродом, предпочитаю обернуть ножку несколькими слоями тонкой слюды, которая по ширине совпадает с металлической трубкой. В некоторых колбах я также применял внешний изолирующий колпачок.
Приведенные замечания предназначены для экспериментаторов на первых стадиях опытов, так как трудности, с которыми они встретятся в дальнейшем, каждый преодолеет по-своему.
Для иллюстрации эффекта экранирования я взял две лампы одинакового размера, размещение их стеклянных ножек, проводов подводки и соединенных с ними элементов накаливания должно быть абсолютно одинаковым. Ножка одной лампы имеет алюминиевый колпачок, на ножке другой его нет. Сначала обе лампы были соединены с насосом Шпренгеля. Когда был максимально откачан воздух, скачала отсоединили и запаяли основную трубку, затем обе лампы. Итак, уровень разряжения в обеих одинаков. Когда их поочередно соединяют с катушкой, дающей определенный потенциал, угольная нить той лампы,