Катушки, работающие от этого прибора, довольно малы и имеют от 5 000 до 15 000 витков во вторичной обмотке. Они помещены в прокипяченное льняное масло и находятся в деревянных ящиках, обшитых цинковыми пластинами.
Я счел целесообразным поменять местами обмотки и намотать в этих катушках первичные обмотки сверху; это позволяет применять большую первичную обмотку, что, конечно, уменьшает опасность перегрева и увеличивает мощность катушки. С каждой стороны первичная обмотка короче вторичной на один см для предотвращения пробоя на концах.
Когда первичная обмотка сделана подвижной, что необходимо для некоторых опытов и во много раз удобнее для настройки, я покрываю вторичную обмотку сургучом и обрабатываю на станке, доводя ее диаметр до размера немного меньшего, чем внутренний диаметр первичной обмотки. К последней пристраиваю рукоятку, выступающую из масла, служащую для того, чтобы сдвигать ее по отношению к вторичной.
Теперь позволю себе сделать несколько замечаний в отношении управления катушками индуктивности, которые были опущены в описаниях прошлых опытов.
Вторичная обмотка имеет такую индуктивность, что сила тока, протекающего через провод, очень мала и может быть такой, даже если выводы катушки соединены между собой проводником небольшого сопротивления. Если к выводам присоединить какую-либо емкость, то самоиндукция компенсируется и через вторичную обмотку течет ток большей силы, хотя выводы изолированы. Для человека, совсем незнакомого со свойствами переменного тока, не может быть ничего более загадочного. Эта особенность была продемонстрирована в опыте, где присутствовали металлическая сетка, соединенная с выводами катушки, и резиновая пластина. Когда проволочные сетки подносили близко друг к другу, между ними возникала небольшая дуга, мешавшая прохождению тока большой силы через вторичную обмотку, так как устраняла емкость на выводах; когда между выводами помещали резиновую пластину, емкость созданного конденсатора компенсировала самоиндукцию катушки, и разряд был гораздо сильнее.
Первостепенная задача, следовательно, соединить емкость со вторичной обмоткой, чтобы преодолеть самоиндукцию. Если частота и потенциал очень высоки, то газообразное вещество надлежит тщательно изолировать от заряженных поверхностей. Если использовать лейденские банки, находящиеся под большим напряжением, то их надо погрузить в масло, в противном случае происходит значительное рассеивание. При высоких частотах также важно соединить конденсатор с первичной обмоткой. Можно соединить конденсатор с концами первичной обмотки или выводами генератора, но последнее не рекомендуется, так как устройство можно повредить. Лучше всего, без сомнения, включить конденсатор последовательно с первичной обмоткой и генератором и настроить его емкость так, чтобы устранить самоиндукцию в этих приборах. Конденсатор должен иметь очень тонкую подстройку, для этого удобно применять небольшой масляный конденсатор с подвижными пластинами.
В настоящий момент считаю лучше всего продемонстрировать вам явление, которое я наблюдал не так давно, и которое с чисто научной точки зрения может показаться более интересным, чем всё то, о чем я собирался вам поведать сегодня вечером. Было бы правильным квалифицировать его как разновидность кистевого разряда, формируемого поблизости от выводов или непосредственно на одном из них в вакууме.
В колбе, имеющей проводящий вывод, даже если он алюминиевый, кистевой разряд недолговечен, и, к сожалению, даже в том случае, если из колбы удалить электрод. При исследовании одного явления, несомненно, следует пользоваться колбой, в которой нет подводящего провода. Я выяснил, что лучше всего пользоваться такими колбами, какие показаны на рисунках 12 и 13.
На рисунке 12 лампа состоит из колбы
Эта сфера должна быть как можно лучше запаяна в центре большой колбы. Перед запайкой тонкую трубку
Конструкция на рисунке 13 была выбрана с целью удалить из кисти любой проводник, могущий оказать на нее воздействие. Лампа в данном случае состоит из колбы
На рисунках 14, 15 и 16 показаны разные формы, или стадии, кисти. На рисунке 14 показано, как разряд возникает в колбе, имеющей проводящий вывод: но поскольку в такой колбе он очень скоро исчезает — часто за несколько минут, — я продолжу описывать это явление так, как оно видится в колбе, где нет электрода. Оно наблюдается при следующих условиях: Когда из колбы
Когда кисть принимает форму, показанную на рисунке 16, она может стать очень чувствительной к электростатическому и магнитному воздействию. Если лампа висит на прямом проводе и все предметы удалены от нее, а к ней приблизится на несколько шагов наблюдатель, то это заставит разряд переместиться на другую сторону, а если наблюдатель будет ходить вокруг нее, то разряд всегда будет находиться на противоположной стороне. Он может начать вращение вокруг вывода задолго до того, как достигнет этой чувствительной фазы. Когда начинается вращение, да и несколько раньше тоже, на него оказывает влияние магнит, а на определенной стадии он становится крайне восприимчивым к его влиянию. Небольшой постоянный магнит, полюса которого отстоят друг от друга на расстоянии двух сантиметров не более, зримо воздействует на кисть на расстоянии двух метров, замедляя или ускоряя ее вращение в зависимости от того, как он расположен по отношению к ней. Мне кажется, я заметил, что в тот момент, когда кисть наиболее чувствительна к магнитному воздействию, она не так подвержена влиянию электростатического поля. Мое объяснение таково: электростатическое притяжение между кистью и стеклом колбы, которое задерживает вращение, растет гораздо быстрее, чем магнитное воздействие, когда возрастает интенсивность потока.
Когда лампочка висит на проводе колбой